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A GENERIC BILEVEL FORMALISM FOR UNIFYING
AND EXTENDING MODEL REDUCTION METHODS

1. INTRODUCTION

In its broadest sense, model reduction methods synthesize, from one model, a new “reduced” model
whose response-predictions coincide with that of the original model for a specified subset of the original
scope of stimuli. Within this restricted scope of admissible stimuli driving the response, the synthesized
model can be used in place of the original model. The benefit usually corresponding to this is a considerable
reduction in overall computational effort. This is satisfactory if the modeler/analyst is interested only in the
model’s response to this subset of admissible stimuli. The problem remains, however, that outside of this re-
stricted scope of admissible stimuli, the synthesized model’s predictions typically compare poorly with that
of the original model. A remedy to this dramatic dropoff in accuracy is to somehow approximate this “resid-
ual” part of the model in a manner that is consistent with the reduced-model synthesized and, at the same
time, is complementary to the model reduction method. This results in a hybrid approximation to the origi-
nal model. “Consistent” here means that the scope over which the reduced model is faithful to the original
model is fully preserved when it is combined with the other approximation, conjugate to the model reduction
method, to form the hybrid. “Complementary” here means that the conjugate approximation be an adequate
one over at least the set of stimuli not admissible to the corresponding model reduction method. A good
role model for the combination of complementary approximations into a self-consistent, efficient hybrid is
that of multigrid methods [1, 2]. One approximation is effective at eliminating oscillatory error components
(on a fine grid) and the other is effective at eliminating smooth error components (on a coarse grid). In this
paper, an abstract, algebraic bilevel version of this approach is developed that provides a general means of
consistently combining model reduction methods with other approximations. The generic formalism en-
compasses at least three broad classes of model reduction methods: smoothing/homogenization, reduced
basis, and substructuring methods. A particular model reduction method operates at one “level” (the coarse
grid analogue) and some conjugate approximation (of the original model response) operates at the other
“level” (the fine grid analogue). A generic continuation approach is proposed and developed in this paper
as a class of conjugate approximations. This choice is seen to unify and generalize several successful ap-
proaches to extending the utility of reduced basis methods.

One important class of model reduction methods applies to the modeling of coupled-multiscale phenom-
ena for which the differences in scale are significant. A prominant example of this would be a structural-
component model of a material that possess an intricate spatial heterogeneity of a length scale small with
respect to structural dimensions but large with respect to atomic dimensions. Homogenization and smooth-
ing methods of model reduction were developed for these and similar such cases. Both methods refer to
the process of mathematically synthesizing a macroscale (usually effective single-phase constitutive) model
from a given mesoscale/microscale model such that the predictions of each coincide on the macroscale.
Methods designed for periodic media are usually referred to as homogenization methods in the literature.

Manuscript approved September 30, 1999.
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2 L.D. Flippen, Jr.

The best known and most widely used is the asymptotic approach [3, 4, 5, 6, 7], which is based on special-
izing the derivative-expansion version Ref [8, pp. 230–232] of the multiple scales perturbation method to
a biscale expansion in the spatial variables. Methods of smoothing (see Refs. [9] and [10, p. 16]), which
are designed for statistically homogeneous random media, have several variants, including “self-consistent”
methods [10, 11] and methods that bound [10, 12] the constitutive parameter values through the use of
variational principles. Fishman and McCoy [13] showed that both homogenization and smoothing meth-
ods can be united under a single projection operator framework. Similar projection techniques have been
used previously to deduce the influence of one scale upon another in other areas, such as neutron transport
Refs. [14, pp. 37, 193-194, and 236-250] and nonequilibrium statistical mechanics [15]. An example of a
type of heterogeneity that does not fit either of the usually-assumed periodic or random material models is
found in Steinberg and McCoy [16]. They consider the case of fluid-loaded structures for which the hetero-
geneous regions, each of limited spatial extent on the macroscale, are irregularly distributed. The enabling
assumption of the projection technique [13, 16] underlying both homogenization and smoothing methods is
that the fluctuation-scale-response is excited solely by its coupling to the macroscale response; any external
stimulation of the system is taken to occur at the macroscale only.

Multiscale systems are also represented by models with a finite number of degrees-of-freedom (DOF).
If properly chosen, a given subset of the model’s DOF can represent a corresponding scale of the model,
with fewer DOF usually required the larger the scale. Conventional multigrid methods can be used to model
these scales and their coupling for models consisting of sets of algebraic equations. Another important class
of finite-degree-of-freedom mathematical models consists of coupled sets of ordinary differential equations,
a common source of such models being spatial discretization of a physical system via finite-element meth-
ods (FEMs) or finite-difference methods. The number of DOF of such models is often large, making their
response-prediction computationally expensive. Two overlapping classes of DOF reduction methods appro-
priate to such systems are reduced basis methods, which use a Rayleigh-Ritz approximation with respect to
a reduced set of generalized coordinates, and “substructuring” methods, for which the DOF of the synthe-
sized reduced-model consists of a chosen subset of the DOF of the original model. The admissible stimuli
for the reduced basis method consists of the span of a small number of basis vectors (the “reduced basis”),
the number being small compared with the total number of DOF if the method is to be efficient. In turn,
the usual enabling assumption for the substructuring methods is that the eliminated DOF, that is, those not
retained in the reduced-model (and typically composing the “substructures”), cannot be externally stimu-
lated (loaded). A partial summary of substructuring methods is given by Abdelhamid [17]. The first and
still very popular such method is that due to Guyan [18]. Flippen [19] derived a number of such methods
from a general time-derivative series solution [20]. The Modal Reduction method [21, 22, 23], popular for
the synthesis of Test-Analysis-Models (TAMs) via elimination of (almost) all but the test-sensor-associated
DOF, is an adaptation of modal reduced basis methods to substructuring.

For reduced basis methods, the reduced basis sets consist mainly of either Lanczos/Ritz, modal, or
solution-path-derivative vectors. As pointed out by Nour-Omid and Clough (Ref. [24, p. 566]), Ritz vector
methods [25], as usually implemented, are essentially Lanczos methods. Lanczos methods are applicable to
models constrained to loads contained within the span of a small number of fixed vectors. These fixed load-
basis vectors are used, in turn, to construct a reduced basis spanning the Krylov subspace associated with
the method. The Lanczos method is usually discussed in terms of a second-order formulation, but it also
has a first-order formulation [26] for nonproportional damping, as well as block [27], modal-hybrid [28],
and other variants. Noting the analogy of their method to those based on Krylov subspaces (in particular,
those of Arnoldi and Lanczos), Häggblad and Eriksson [29] recognized that efficient, “generalized Krylov”
subspace descriptions can be generated as recursive relations from series solutions of the governing equa-
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tions. They take a physical approach and derive advanced methods of this type from series in which “each
component is successively computed by balancing the inertia forces from the previous component in the se-
ries.” This prescription for generating their series is model-specific to mechanics. In particular, they do not
explicitly identify an underlying generic perturbation or continuation method associated with any of their
series. The application of modal reduced basis methods for linear problems is commonplace. Its applica-
tion has been extended [30] to nonlinear structural dynamics problems as well. Continuation-based reduced
basis methods, as summarized mathematically by Rheinboldt (Ref. [31, pp. 80-86]) for example, seem to
have a growing history of practical success with respect to some nonlinear problems (see Noor [32], Noor
and Whitworth (Ref. [33, p. 915]), Noor (Ref. [34, p. 958]), and Noor and Peters [35], for example). The
solution and its path derivatives at a point on the continuation path are used as a Rayleigh-Ritz reduced basis.

Kammer [21] recognized the need for and constructed a hybrid extension to modal reduction for build-
ing robust TAMs. The force derivative method is another example of a model reduction hybrid, in this case
for extending modal reduced basis approximations. With linear FEM models of mechanical systems as a
benchmark, comparisons [36, 37, 38] between several reduced basis methods based on computed responses
of the resulting reduced dynamical models, seem to favor the force-derivative [37, 39, 38] and the (closely
related) Lanczos [24, 27, 26, 40] methods. This is evidence supporting the utility of hybrid extensions to
model reduction methods. The force-derivative method encompasses [39, 38] the older mode-displacement
and mode-acceleration methods [41, 42] as zeroth and first-order submethods, respectively. It is essen-
tially a modal basis method that is systematically corrected by terms containing residual mode information.
(The chosen modal basis vectors are the target modes whose span contains the reduced model’s response.)
Its importance is underscored by the fact that it provides both a foundation and extension to the popular
Craig-Bampton [43] version of component mode synthesis [44], as shown by Suarez and Singh [45]. The
conventional version of the force derivative method is a convolution integral formulation [39, 38], from
which higher order corrections are derived via repeated integration by parts of the integral. This integration-
by-parts development of the series is apparently serendipitous; a direct systematic development in terms
of a generic perturbation methodology is neither mentioned nor used as an alternative. As shown later in
this paper, the force derivative and Lanczos methods are closely related. For the case of generic undamped
mechanical FEM models, if the force derivative method is constrained to loads within the span of a small
number of fixed vectors (a Lanczos requirement), each correction term of the method then reduces to a
scalar-multiple of a basis vector for the (Lanczos-associated) Krylov subspace.

Frequency window methods form another class of hybrid methods, their original intention essentially
being an extension to modal methods. They are very efficient for extensive time-harmonic re-analysis. In
structural acoustics, for example, fine frequency sweeps may be needed to build transient responses (Ref [46,
p. 251]) using fast Fourier transforms. Igusa and Achenbach et al. [47, 48, 46] have developed frequency
window methods for which substructure attachments are coupled to a main structure by Lagrange multipli-
ers. Its efficiency derives from its use of two complementary approximations, a frequency-response repre-
sentation of the resonances by simple analytical forms in conjunction with frequency-interpolation over the
nonresonance part of the response within a “window.” In Ref. [46], for example, the modes of a fluid-loaded
shell are used to analyze the response of the same shell with internal substructures. The eigensolution is
“subtracted out” of the fluid-shell response, leaving an interpolation over the “smooth,” nonresonance part
of the fluid-shell response within a window. An analytical expression is used to represent the resonant part
of the fluid-shell response in terms of the the fluid-shell eigenvalues and eigenvectors, which are obtained by
independent, external means. Flippen [49] developed a frequency window version of substructuring meth-
ods for degree-of-freedom reduction. Ingel et al. [50] extended this into a finite-element environment.
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The formalism of this paper attempts to encompass these currently accepted, in-use hybrid methods as
special limiting cases while mathematically extending their foundation to a more general model reduction
setting. In this context, specific computational implementations and applications are beyond the scope of
this report. Feedback from such computational experience is ultimately necessary for refining an algoritm
and increasing its efficiency. Therefore, the practical envelope-of-utility of any particular algorithm arising
from this formalism cannot be fully evaluated here.

2. MATHEMATICAL FORMALISM

Let the mathematical model to be considered in this report be generically represented by

Lu = f; (2.1)

where L is the system operator, u is the system response, and f is the system stimulus (loads, sources,
etc.) driving the system. The formal, generic nature of the model description (2.1) allows for the derivation
of results of a general nature and utility. It should be noted that (2.1) is not necessarily in a state-space
formulation. Although some of the results that follow are not new, they are included for completeness. In
addition, the development that follows carries with it the implicit caveat that the ranges and domains of
the appropriate operators are such that the various operator compositions indicated are well-defined. As an
algebraic notation, juxtapositioning of operators in this report denotes their compositioning as mappings.
The additional notationR(A) = frange of Ag, D(A) = fdomain of Ag, and N (A) = fnullspace of Ag for
generic operator A will also be used.

2.1 Generalized Inverse Theory for Model Reduction

The typical goal of any particular model reduction method is to provide an accurate approximation to L�1

over the “relevant” subsets of possible u’s and f ’s of (2.1), that is, over a restricted domain and range for L.
In this report, this approximation to L�1 is made generic to all such model reduction methods and system
models (2.1) through the concept of an “outer generalized inverse” of L.

Definition 1 For a given operator L, an outer generalized inverse of L, denoted by LI , satisfies

LILLI = LI : (2.2)

Similarly, an “inner generalized inverse” of L, denoted by LII , satisfies

LLIIL = L: (2.3)

The ordinary inverse L�1, when it exists, is both an inner and outer generalized inverse. This report is
exclusively concerned with outer generalized inverses. The terminology is borrowed from the theory of ma-
trices (Ref. [51, pp. 428–432]), for which a matrix generalized inverse satifying both (2.2) and (2.3) always
exists for any given matrix L. In a more general operator setting for which L is not necessarily a matrix,
one might satisfy one of either (2.2) or (2.3) without satisfying the other. The distinction between which of
(2.2) and (2.3) is satisfied is then necessary. The terms “inner” and “outer” are used to make this distinction
for lack of a known precedence regarding terminology. As in the matrix case, generalized inverses in this
more general setting are not, in general, unique. The following theorem also carries over from the matrix
case to the general operator setting.
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Theorem 1 The operators LLI and LIL are each idempotent. If L is bijective, so that L�1 exists, then

L�1 = LI + (I � LIL)L�1 (2.4)

L�1 = LI + L�1(I � LLI) (2.5)

are identities expressingL�1 in terms ofLI and a “residual” term containing one of the idempotent operators
(I � LIL) or (I � LLI).

The proof that LLI and LIL are each idempotent follows directly from (2.2). (An idempotent A satisfies
A2 = AA = A.) The proof of (2.4) and (2.5) follows from the decompositons of the identity given by

I = LIL+ (I � LIL) (2.6)

I = LLI + (I � LLI); (2.7)

respectively. In (2.6) each element ofD(L) is uniquely decomposed into the sum of a component inR(LIL)
and a component in R(I � LIL). Similarly, in (2.7) each element of R(L) is uniquely decomposed into
the sum of a component in R(LLI) and a component in R(I � LLI). If one uses LI as an approximation
to L�1 in (2.4) or (2.5) by neglecting the residual term (for now), one is effectively computing a reduced set
of responsesR(LIL) for (2.1) for a reduced set of stimuliR(LLI). This can be more easily seen by use of
the identities

LI = L�1(LLI) (2.8)

LI = (LIL)L�1: (2.9)

The first identity shows that filtering the stimuli in R(L) by LLI and then solving (2.1) is equivalent to
using LI directly. Similarly, the second identity shows that filtering the response (obtained from solving
(2.1)) by LIL is also equivalent to using LI directly.

To make use of outer generalized inverses as model reduction approximations, one must be able to con-
struct them so that eitherR(LLI), R(LIL), or both, are adjusted to correspond to the set of relevant stim-
uli, responses, or both, respectively. The following theorem gives conditions for predetermining R(LLI),
R(LIL), or both for a certain class of outer generalized inverses.

Theorem 2 Given a system operator L for system model (2.1), let the relevant stimuli and response subsets
be given by R(Pr) � R(L) and R(Pd) � D(L), respectively, for the linear idempotent operators Pr and
Pd. Define the effective version of L as

Leff = PrLPd: (2.10)

If LI
�

is defined by
LI

�
= PdLeff

IPr; (2.11)

then LI
�

is an outer generalized inverse of L and

N (PrL) � R(I � LI
�
L): (2.12)

For a given f in (2.1), define a model reduction approximation to the response as u= LI
�
f for whichLeff I

in (2.11) satisfies either
PdLeff

ILeff = Pd; (2.13)

or
LeffLeff

IPr = Pr; (2.14)

or both.
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� If Leff I satisfies (2.13) then

R(LI
�
L) = R(Pd)

= N (I � LI
�
L) (2.15)

LI
�
LPd = Pd (2.16)

N (Leff) = N (Pd): (2.17)

� If Leff I satisfies (2.14) then

R(LLI
�
) = R(Pr)

= N (I � LLI
�
) (2.18)

PrLL
I� = Pr (2.19)

N (PrL) = R(I � LI
�
L): (2.20)

� If Leff I satisfies both (2.13) and (2.14), then LI
�

is unique.

� If Pr and Pd satisfy
PrL(I � Pd) = 0 (2.21)

and Leff I satisfies (2.13), then
LI

�
L = Pd (2.22)

and Leff I satisfies (2.14) as well.

� If Pr and Pd satisfy
(I � Pr)LPd = 0 (2.23)

and Leff I satisfies (2.14), then
LLI

�
= Pr: (2.24)

If, in addition,N (L) = f0g then Leff I satisfies (2.13) as well.

The subscripts “r” and “d” on Pr and Pd denote range and domain (of L), respectively. Appendix A con-
tains the proof of Theorem 2. Theorem 2 reduces the model reduction process to finding a Leff I satisfying
either (2.13) to obtainR(LI

�
L) = R(Pd) of (2.15), (2.14) to obtainR(LLI

�
) = R(Pr) of (2.18), or both.

The Leff approximation of L given by (2.10) is essentially a generalized Petrov (or Galerkin) method for
arbitrary (not necessarily of finite dimension) subspaces.

A primary advantage of satisfying either of the constraints (2.21) or (2.23) is that LI
�
f may then be an

exact solution to (2.1). In the case for which (2.22) is valid, if u= LI
�
f , then Pdu=LI

�
Lu= LI

�
LLI

�
f =

LI
�
f = u and LI

�
(Lu� f) = Pdu � LI

�
f = Pdu � u = 0, so that (Lu� f) 2 N (LI

�
). In the case for

which (2.24) is valid, f = Prf = LLI
�
f = Lu shows that u = LI

�
f is an exact solution to (2.1) for all f

satisfying Prf = f .

The constraint (2.23) on Pr and Pd for model reduction is not new. In fact, PrLPd = LPd corresponds
exactly with the constraint (6) of (Ref. [52, p. 126]) when making the associations Pr ! P and Pd ! 
P ,
where P and 
P are the notations of (Ref. [52]). The constraint (3) of (Ref. [52, p. 125]) on stimuli f
justifies the association Pr ! P . The PrLPd = LPd constraint, in conjunction with (2.14), is seen here to
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arise naturally as a means of simultaneously obtaining both (2.24) and R(LI
�
L) = R(Pd) of (2.15) in the

case of bijective L. A similar advantage is acrued by adherence to (2.13).

The following corollary of Theorem 2 provides alternatives to (2.4) and (2.5) as decompositions of L�1

into LI
�

and a residual term.

Corollary 1 If, in Theorem 2, L is bijective then (2.13) implies

L�1 = LI
�
+ (I � LI

�
L)(I � Pd)L

�1 (2.25)

and (2.14) implies
L�1 = LI

�
+ L�1(I � Pr)(I � LL

I�): (2.26)

Proof: The relation (2.13) implies (2.16), which implies (I � LI
�
L)Pd = 0, which in turn implies (I �

LI
�
L)(I � Pd) = (I � LI

�
L), and (2.25) follows from (2.4). The relation (2.14) implies (2.19), which

implies Pr(I � LLI
�
) = 0, which in turn implies (I � Pr)(I � LLI

�
) = (I � LLI

�
), and (2.26) follows

from (2.5).

2.2 A Bilevel Formalism

Taking LI ! LI
�

in (2.4) and operating upon f , with L�1f � uj+1 on the left-hand side and L�1f � uj
on the right-hand side, suggests the iteration scheme

uj+1 = LI
�
f + (I � LI

�
L)uj :

The iteration error can be found from taking G! LI
�

in the following theorem, which is well-known in
matrix iterative analysis.

Theorem 3 Let

uj+1 = Gf + (I � GL)uj

= uj +G(f � Luj) (2.27)

represent an iteration scheme for uj for generic G. If the exact error in uj is given by ej = u � uj for
u = L�1f , then

ej+1 = (I �GL)ej : (2.28)

Proof: Equation (2.27) leads to

uj+1 = Gf + (I � GL)uj

= GL(L�1f) + uj �GLuj

= GLu+ uj � GLuj

= GL(u� uj) + uj

= GLej + uj ;
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so that

ej+1 = u� uj+1

= u� uj � GLej

= ej �GLej

= (I � GL)ej :

As (I � LI
�
L) is idempotent, its norm is never less than one, and the iteration scheme does not improve

the error with each iteration. As in the multigrid case (see Lemma 2.1 of [1, p. 23]), one needs to combine
LI

�
with another approximation for L�1. With the conjugate approximation for L�1 denoted by eL�1, the

iterative scheme

u0 = 0 (2.29)euj+1 = eL�1f + (I � eL�1L)uj (2.30)

uj+1 = LI
�
f + (I � LI

�
L)euj+1 (2.31)

for j � 0, for which the error satisfies

ej+1 = (I � LI
�
L)(I � eL�1L)ej ;

converges if the norm of (I� eL�1L) is sufficiently small. One would expect that if eL�1 is a “good enough”
approximation for L�1, so that eL�1L is “close enough” to I , then this norm would be small. If eL�1, is a
very good approximation for L�1, then one iteration should be a sufficient approximation, so that j = 0 in
(2.31) leads to

L�1 � LI
�
+ (I � LI

�
L)eL�1 (2.32)

upon taking u1 � L�1f on the left-hand side and dropping f (because f is arbitrary). Equation (2.32), or
some variant of it based on (2.25) or (2.26), can form the basis of some noniterative model reduction hybrid
methods.

The iteration scheme of (2.30) and (2.31) is analogous to a bilevel multigrid method [1, 2], with (2.30)
analogous to the fine-grid-smoothing step and (2.31) analogous to the coarse-grid-correction step. The
operator (I � LI

�
L) is analogous to the coarse-grid-correction matrix. This suggests possible variants

of (2.30) and (2.31), such as using multiple iterates of (2.30) both before and after the (2.31) iterate, as
is usually the case in the conventional bigrid method. Even at this abstract level, the algebraic essence
of the bigrid method is preserved in that (2.12) and N (I � LI

�
L) = R(Pd) of (2.15) are analogous to

N (I2hh Ah)� R(CG) (implied) and N (CG) = R(Ih2h), respectively, of Briggs [2, p. 79]. (Both (2.13) and
(2.14) are satisfied in the conventional bi-grid method, as will be seen later.)

2.3 Generic Perturbational Conjugate Approximation

A generic continuation approach eL�1 = T (�)�1j� = 0!1 (2.33)

for T (1) = L will now be developed as the conjugate approximation of L�1 for use in (2.30) or (2.32). As
a brief synopsis, in continuation methods one embeds the problem to be solved, denoted generically by

T (�)u = q(�);
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into a continuum of problems
T (�)u = q(�);

linked by a parameter, in this case �. The problem to be solved is placed at � = �, where � is usually
normalized so that � = 1, and a related problem

T (0)u = q(0);

which is comparatively easy to solve, is placed at �= 0. There are a number of ways in which the computed
continuation from �= 0 to � = � for the generic case can be accomplished [31, 53]. One approach is to carry
out a perturbation expansion of the embedded �-problem about � = 0, carry a sufficient number of terms in
the expansion for accuracy, and evaluate the resulting expansion at �= �. This is an old, widely used version
of continuation (Ref. [54, p. 245]), and it is the version that is used in this report (with � = 1).

If the � expansion of T (�) is finite for generic operator T , then an explicit, generic perturbational expan-
sion for T (�)�1 is given by the following two theorems.

Theorem 4 Let the operator T have the finite expansion

T (�) =
JX
j=0

�jTj (2.34)

in the scalar parameter � for a given nonnegative integer J . The linear component operators Tj are each
assumed to be independent of �, and T0�1 is assumed to exist. Let the operators �R and �L each have the
finite expansions

�b(�) =
NX
j=0

�j�bj (2.35)

for a given nonnegative integer N , b ! R or L, where the component operators �Rj and �Lj are each
assumed to be independent of �. Define the right component operators 
R

j by the recursion relation

T0

R
j = HNj�

R
j �

"
JX

k=1

HjkTk

R
j�k

#
(2.36)

and the left component operators 
L
j by the recursion relation


L
jT0 = HNj�

L
j �

"
JX

k=1

Hjk

L
j�kTk

#
; (2.37)

where the discrete step functionHjk is defined by

Hjk =

(
I if k � j
0 if k > j,

(2.38)

and where I is the identity operator and 0 is the zero operator. The operators


R(�) =
MX
j=0

�j
R
j ; (2.39)
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and


L(�) =
MX
j=0

�j
L
j ; (2.40)

for a given nonnegative integer M , satisfy

T
R � �R =

Max(N;M+J)X
j=M+1

�j
" 

JX
k=0

HjkHM;j�kTk

R
j�k

!
�HNj�

R
j

#
(2.41)

and


LT � �L =

Max(N;M+J)X
j=M+1

�j
" 

JX
k=0

HjkHM;j�k

L
j�kTk

!
�HNj�

L
j

#
; (2.42)

respectively.

Appendix B provides the proof. The above result has utility, for example, when the right-hand sides of
(2.41) and (2.42) are O(�M+1). In this case, (2.41) and (2.42) take the practical forms

T
R � �R = O(�M+1) (2.43)


LT � �L = O(�M+1): (2.44)

It is assumed that even if the perturbation is not analytical, the results still have value in terms of an asymp-
totic series. The “of the order of” Landau symbol O (Ref. [8, p. 8]) is defined byn

A(�) = O(�k)
o
 !

n
lim�!0




A(�)
�k




 < 1
o

for genericA of a normed space with given norm k k and a given nonnegative integer k. Sufficient conditions
under which 
L and 
R coincide are provided by the following theorem. (The question as to whether these
conditions are also necessary will not be pursued here.)

Theorem 5 Under the hypothesis of Theorem 4 for N = 0, assume that (2.36) and (2.37) reduce to


R
m = H0mA�

JX
k=1

HmkATk

R
m�k (2.45)

and


L
m = H0mA �

JX
k=1

Hmk

L
m�kTkA; (2.46)

respectively, for some operator A = T0
�1�R0 = �L0T0

�1. For each m � 0, the 
R
m component of (2.45)

and the corresponding 
L
m component of (2.46) are equal.

The proof is deferred to Appendix C.

2.3.1 Perturbational Operator Inversion

An important special case of the previous section is that for which N = 0 and �R = �L = �0 = I , the
identity operator, so that (2.36) and (2.37) reduce to


R
m = H0mT0

�1 �
JX

k=1

HmkT0
�1Tk


R
m�k (2.47)
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and


L
m = H0mT0

�1 �
JX

k=1

Hmk

L
m�kTkT0

�1; (2.48)

respectively, and (2.43) and (2.44) together imply


 = T (�)�1 + O(�M+1): (2.49)

One would expect this to be the case for T (�) bounded-holomorphic (Ref. [55, pp. 366, 419]), for example.
The superscripts R and L have been dropped from the 
 in (2.49) because in this case one has 
L = 
R,
as supported by the following corollary to Theorem 5.

Corollary 2 Under the hypothesis of Theorem 5 for �R = �L = I , so thatA= T0
�1, assume that (2.41) and

(2.42) imply (2.43) and (2.44), respectively. For each j, the
R
j component of (2.47) and the corresponding


L
j component of (2.48) are equal, so that (2.49) and

T (�)�1 =
MX
j=0

�j
j + O(�
M+1) (2.50)

are justified for 
j component operators recursively defined by either (2.47) or (2.48).

Corollary 2 shows that the components given by (2.47) can be thought of as those of the �-expansion of
T�1. The only inversion used in computing T (�)�1 for all � is that for T0.

The results (2.47) can be tested against known results for generic perturbational operator inversions.
The J = 1 subcase of (2.50), for which (2.47) reduces to


0 = T0
�1 (2.51)


m = [�T0
�1T1]
m�1 for m � 1, (2.52)

is equivalent to the well-known Neumann series (Ref. [55, pp. 30, 32]). To see this, take J = 1 in (2.34) to
get

T = T0 + �T1

= T0
h
I + �T0

�1T1
i

= T0
h
I � �(�T0

�1T1)
i
;

so that

T�1 =
h
I � �(�T0

�1T1)
i�1

T0
�1: (2.53)

The Neumann series results by the use of the “binomial” operator expansion

[I � �A]�1 =
1X

m=0

�mAm (2.54)

for bounded linear operators A (Ref. [56, p. 375]). (The expansion (2.54) is convergent when the magni-
tude of � is less than the inverse of the norm of A, assuming a Banach space setting.) Using (2.54) with
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A = �T0
�1T1 in (2.53) leads to

T�1 =

(
1X

m=0

�m
h
�T0

�1T1
im)

T0
�1

=
1X

m=0

�m
h
�T0

�1T1
im
T0
�1

=
1X

m=0

�m
m; (2.55)

where

m =

h
�T0

�1T1
im
T0
�1: (2.56)

This expression for 
m is equivalent to (2.51) and (2.52).

For the J = 2 subcase of (2.50), (2.47) leads to


0 = T0
�1 (2.57)


1 = �T0
�1T1T0

�1 (2.58)


m = �T0
�1[T1
m�1 + T2
m�2] (2.59)

for m � 2. This agrees with the first few terms for T�1 given by Kato in (6.16) of (Ref. [55, pp. 420]).
Note that (2.57) through (2.59) reduce to (2.51) and (2.52) for T2 = 0, as it should.

2.3.2 Outline of Procedure for Applying Formalism

To complete the development of the generic continuation (2.33) for T (1) = L as the conjugate approxima-
tion of L�1, take �! 1 in (2.50) to get

T (�)�1j� = 0!1 =
MX
j=0


j : (2.60)

As (2.47) or (2.48) are equally valid by Corollary 2, (2.47) will be used for definiteness. With the superscript
R dropped from 
R in (2.47) because 
L = 
R, the 
j’s in (2.60) are recursively given by


m = H0mT0
�1 �

JX
k=1

HmkT0
�1Tk
m�k : (2.61)

The steps to implement the formalism of this paper using this generic perturbation as the conjugate approx-
imation are summarized as:

� Construct the linear idempotent operators Pr and Pd such that the relevant stimuli and response sub-
sets are given byR(Pr)�R(L) andR(Pd)�D(L), respectively, where L is the system operator for
the system model (2.1). It is advantageous, but more work, to fix one of either Pr or Pd and determine
the other from either (2.21) or (2.23).

� ForLeff given by (2.10), determineLeff I such that it satisfies either (2.13), (2.14), or both. Construct
LI

�
from this Leff I using (2.11).

� Embed L in a �-continuation T (�) such that
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– T0
�1 exists

– T0
�1 is much more easily computed than L�1

– T (1) = L, and

– T has the expansion (2.34) for some J .

� The continuation should complement the model reduction approximation LI
�

in that it should lead to
a reasonably accurate approximation to L�1 outside ofR(Pr) andR(Pd).

� The conjugate approximation eL�1 is determined by (2.33) and (2.60) for 
j’s recursively given by
(2.61) for some chosen value of M .

� The solution u to (2.1) is constructed either from u = L�1f with L�1 approximated by (2.32), or
iteratively using (2.29) through (2.31) (or some variant). There will probably be a tradeoff between
M and the number of inner iterations of (2.30); accuracy may require many iterations of (2.30) per
evaluation of (2.31) for small M , or only one iteration of (2.30) per evaluation of (2.31) for large
enoughM .

The next section shows that there are several important classes of model reduction methods for which the
second step, in which Leff I is determined to satisfy either (2.13), (2.14), or both, is already “worked out.”
The operator Leff I is constructed from Lred

�1, where Lred is a “reduced” version of L. The construction
of Leff I from Lred

�1 and the specific definition of Lred varies from one class of model reduction method
to another. For these cases, the bulk of the effort in the second step above reduces to the computational work
of obtaining/applyingLred�1.

3. CLASSES OF METHODS ENCOMPASSED

The formalism of this report encompasses the reduced basis, substructuring, and smoothing/homogenization
methods of model reduction. To maintain as general a setting as possible for the development of the reduced
basis and substructuring methods, L of (2.1) is taken to be a square system matrix with operator compo-
nents, as in Ref. [20]. In keeping with this, the definition of the multiplication of two arbitrary matrices is
generalized to

(AB)ij =
X
k

AikÆBkj (3.1)

for compatible matrices A and B, where the symbol Æ denotes mapping composition, that is, AikÆBkj

applied to some function g is interpreted as Aik(Bkj(g)). The associative and distributive laws of ordinary
matrix algebra carry over to this more general setting for the case of linear operator components. For L to
preserve compatibility with multiplication by ordinary matrices, and to associate each component of u with
one degree-of-freedom, the domain and range of each of the operator components consist of scalar-valued
functions. In the special case where B in (3.1) is a matrix of such functions, the Æ in (3.1) is interpreted
to mean AikÆBkj = Aik(Bkj). Ordinary matrices are special cases for which each component operator
consists of scalar multiplication by a fixed scalar value. Viewed as a single matrix, the L of

L = K +D
@

@t
+M

@2

@t2
(3.2)

is a less trivial example of an operator-component matrix, each component being an ordinary differential
equation operator. In mechanics theM ,C, andK denote the mass, damping, and stiffness matrices, respec-
tively.
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3.1 Reduced Basis Methods

Reduced basis methods consist of an approximation to the original governing equations over subspaces,
each of which is spanned by a small number of basis vectors. Let the columns of the matrix �d consist of
a set of basis vectors for a chosen subspace of the domain of L. The span of the columns of �d represents
the subspace of relevant system responses u for (2.1). Similarly, let the columns of the matrix �r consist
of a set of basis vectors for a chosen subspace of the range of L. The span of the columns of �r represents
the subspace of relevant system stimuli f for (2.1). The matrices �d and �r are of the same dimensions.
The accuracy of any particular reduced basis method is largely dependent on the particular choice of basis
in �d and �r, such choice largely distinguishing between specific methods. Let �r and �d be two square
matrices whose size is equal to the number of rows of �d and �r, such that �r

y�r�r and �d
y�d�d are both

nonsingular. The superscript y denotes the adjoint (transpose with complex conjugation). Take Pr and Pd
as

Pr = �r�r
I (3.3)

Pd = �d
I�d (3.4)

for

�r
I = �r[�r

y�r�r]
�1�r

y (3.5)

�d
I = �d[�d

y�d�d]
�1�d

y: (3.6)

Note that �rI and �dI as defined by (3.5) and (3.6) are outer generalized inverses of �r and �d, respectively.
By Theorem 1, Pr and Pd are idempotent as required by Theorem 2. It is also readily shown that

�r
yPr = �r

y (3.7)

Pd�d = �d: (3.8)

The Leff defined by (2.10) becomes

Leff = �r�r[�r
y�r�r]

�1Lred[�d
y�d�d]

�1�d
y�d (3.9)

in this case, where the reduced version of L for this class of methods is defined to be

Lred = �r
yL�d: (3.10)

The size of Lred is equal to the number of reduced basis vectors, that is, the number of columns of �r (or
�d). The essence of the reduced basis method is to use Lred�1 instead L�1 to solve (2.1). Therefore, the
number of such basis vectors must be kept small compared to the original number of DOF for the method
to be efficient. The number of �r’s (or �d’s) columns must be significantly less than the number of its rows
if worthwhile problem size reduction is to occur.

It is readily verified that Leff I given by

Leff
I = �dLred

�1�r
y (3.11)

is an outer generalized inverse of the Leff of (3.9) that also satisfies

Leff
ILeff = Pd (3.12)

LeffLeff
I = Pr: (3.13)
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Since Pr and Pd are idempotent, (3.12) and (3.13) imply (2.13) and (2.14), respectively. It is also readily
verified that LI

�
= Leff

I for LI
�

given by (2.11), so that

LI
�
= �d(�r

yL�d)
�1�r

y (3.14)

when (3.10) and (3.11) are used. The classic Rayleigh-Ritz reduced basis approximation consists of (3.14)
for the special case of �d = �r = �, appropriate for self-adjoint L.

3.1.1 Modal Method for Linear Mechanics FEM

As a common and important application of reduced basis methods, consider the linear dynamic mechanics
class of finite-element models consisting of second-order ordinary differential equations with real, constant
symmetric matrix coefficients. The L of (2.1) becomes (3.2), for which the typical M and K are at least
positive, if not positive definite. The modal reduced basis method as typically applied to such systems can be
derived as the subcase for which �r = �d =M and �d = �r = �, where the columns of � are normalized
such that

�TM� = I: (3.15)

The superscript T denotes the transpose, the matrices being real. For this case, the matrices Pr and Pd
reduce to

Pr = M��T (3.16)

Pd = ��TM: (3.17)

The modal method is usually accompanied by

� the constraint that �TL� be diagonal, and

� the constraint (2.23), so that (2.24) is true. This means that f = Prf = L(LI
�
f) for all f in the range

of Pr, for which u = LI
�
f is an exact solution to (2.1).

Substituting (3.16) and (3.17) into (2.23), matrix multiplying the result on the right by �, and then using
(3.15) on the result gives

(I �M��T )L� = 0:

This leads to

K� = M��2 (3.18)

C� = M��; (3.19)

where

�2 = �TK� (3.20)

� = �TC� (3.21)

for K and C, (I �M��T )M� = 0 being an identity for M by (3.15). The constraint that �TL� be
diagonal reduces to the constraint that �2 and � be diagonal.

If � is determined so as to satisfy (3.18), then the columns of � are eigenvectors satisfying the real
eigenproblem (3.18) for which the eigenvalues lie along the diagonal of the diagonal matrix �2. The eigen-
vectors are mass normalized by (3.15). (One usually takes � such that K and M are positive definite over
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the span of the columns of �, so that the I in (3.15) and the square of �2 in (3.20) both make sense.) The
relation (3.19) is a constraint on C. It can be put into a more conventional form by the following argument.
Substituting (3.17) in CPd leads toCPd =M���TM upon using (3.19). Substituting this into the identity
C = CPd + C(I � Pd) produces the constraint

C = (M�)�(�TM) + C(I � Pd) (3.22)

on C. Take (3.21) in (3.19), transpose the result, and then use CT = C, MT = M , and (3.17) to get
�TC = �TC(��TM) = �TCPd, so that �TC(I � Pd) = 0. Matrix multiplying this on the left by M�
gives PrC(I � Pd) = 0 by (3.16), so that the identity C(I � Pd) = PrC(I � Pd) + (I � Pr)C(I � Pd)
gives C(I � Pd) = (I � Pr)C(I � Pd) = (I �M��T )C(I � ��TM). Substituting this into (3.22) and
usingMT =M finally leads to the general constraint

C = (M�)�(M�)T + (I �M��T )C(I �M��T )T (3.23)

on the damping matrix. The constraint (3.19) implies that (3.23) and the converse is true as well. If M
is nonsingular and one has a complete set of modes, � then being square, then one would expect (I �
M��T ) = 0 in (3.23) andC = (M�)�(M�)T . In practice, the (I �M��T )C(I �M��T )T component
of C is usually neglected, even if one has an incomplete set of modes, so that C � (M�)�(M�)T . Also,
the � matrix is usually specified. A common choice for � in such cases is

� = 2��; (3.24)

where � is a diagonal matrix with damping ratio values along its diagonal. Under the condition (3.15) with a
complete set of modes, Wilson and Penzien (see (17) through (19) of Ref. [57]) obtainC = (M�)�(M�)T

with � given by (3.24). This constraint on C generalizes Rayleigh and proportional damping.

3.1.2 The Conventional Biscale Case of Multigrid

In the biscale case of multigrid methods, the coarse-grid correction is essentially a reduced basis method.
Using the notation

L ! Lh

u ! uh

f ! fh

of Ref. [1, pp. 18-28], (2.1) represents the fine grid problem. The bigrid coarse-grid correction of Ref. [1,
p. 21] is

uj+1h = ujh + LI
�
[f � Lhu

j
h]

= LI
�
f + (I � LI

�
Lh)u

j
h

for LI
�

given by
LI

�
= IhHLH

�1IHh :

This coarse-grid correction is of the form (2.31). The above expression for LI
�

implies

LI
�
= IhH(I

H
h LhI

h
H)

�1IHh
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when using
LH = IHh LhI

h
H

from (2.21) of Ref. [1, p. 27]. This is in the form of (3.14) upon taking

�d = IhH

�r
y = IHh :

The IHh and IhH are the restriction and prolongation operators, respectively, required for intergrid informa-
tion transfer. The matrix-splitting class of error smoothers used in multigrid can be recast as continuation
methods. As an example, splittingLh = �� U , where � is lower triangular and U is upper triangular with
zero diagonal, suggests the continuation T (�) = � � �U with T (1) = Lh. For this case, the zeroth-order
(�! 0) version of eL�1 in (2.33) leads to the well-known Gauss-Seidel matrix iterative scheme for (2.30).

3.2 Substructuring Methods

In substructuring methods, one tries to approximate the response of (2.1) for a chosen subset of the DOF
of (2.1); this subset being denoted as master DOF. The remaining DOF are correspondingly denoted as
the slave DOF. For many substructuring applications, the slave DOF are associated with a collection of
substructures that are coupled only through the master DOF, the master DOF being associated with a main
coupling structure. Permuting the DOF into master and slave subsets can be represented mathematically by
a (real, orthogonal) permutation matrix P , where

PT = P�1 (3.25)

and the superscript T denotes the transpose. The permutation matrix P is defined to permute u of (2.1), so
that the resulting firstM components of Pu, collectively denoted by um, are associated with theM master
DOF, and the remaining components, collectively denoted by us, are associated with the slave DOF. The
convention adopted in this report is that P , by definition, gathers the master DOF into the upper part of Pu,
so that

Pu =

 
um
us

!
; (3.26)

and similarly for any other column matrix of the same size as u. Using this convention, a choice of sub-
structuring is completely determined mathematically by the permutation matrix P and the number of master
DOFM. This can be extended to square matrices of the size of u as well, and in particular

~L = PLP�1; (3.27)

for L leads to the block partitioned form

~L =

 
~Lmm

~Lms

~Lsm ~Lss

!
: (3.28)

That the LP�1 part of (3.27) permutes the columns of L can be seen by LP�1 = LPT = [PLT ]T , where
PLT permutes the rows of LT . The ~Lmm of (3.28) is aM xMmatrix consisting only of those components
of L relating master DOF to master DOF. A similar statement is true for ~Lss with respect to the slave DOF.
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From the point of view of this report, substructuring methods are also reduced basis methods but with
a different structure from that of Section 3.1. In both cases, the span of the columns of �r determines the
subset ofR(L) of ‘relevance.” In this case, however, the projector Pr satisfies

Pr�r = �r (3.29)

for some choice of �r, as opposed to (3.7). In addition, the admissible�r’s from which one may choose are
restricted to a class which is, in some sense, compatible with one’s choice of substructuring for the system.
This notion is made more precise by the following definition.

Definition 2 For a given number of master DOFM and a given choice of the permutation matrix P , let
the columns of �r span a subset of R(L). The reduced basis consisting of the columns of �r is said to be
compatible with the substructuringM and P if

det([~�r]m
y
[~�r]m) 6= 0 (3.30)

for theM x K matrix [~�r]m, 1 � K �M, where

~�r =

 
[~�r]m
[~�r]s

!
(3.31)

for ~�r given by
~�r = P�r: (3.32)

The subscriptsm and s denote master and slave, respectively.

The following theorem gives this reduced-basis-compatible version of substructuring in the context of the
formalism of this report.

Theorem 6 Let the reduced basis consisting of the columns of �r be compatible with the substructuring
M and P as in Definition 2. Let

�
 =

 
Imm 0

 0

!
(3.33)

represent shorthand notation for a matrix function of its submatrix 
 such that square, idempotent �
 is the
same size as L. The Imm of (3.33) is anM x M identity matrix. If the matrix � is defined by

� = [~�r]s([~�r]m
y
[~�r]m)

�1[~�r]m
y

(3.34)

from (3.31) and (3.32), then the idempotent matrix Pr, defined by

Pr = P
�1��P ; (3.35)

satisfies (3.29). If � satisfies
[~Lss � �~Lms]� = [�~Lmm � ~Lsm]; (3.36)

then (2.13), (2.14), and (2.23) are satisfied for Pd, Lred, and Leff I given by

Pd = P�1��P ; (3.37)

Lred = ~Lmm + ~Lms� (3.38)

Leff
I = P�1�IP; (3.39)
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where

� =

 
Lred 0
0 0

!
; (3.40)

so that

�I =

 
Lred

�1 0
0 0

!
: (3.41)

In this case, Lred is the reduced version of L and LI
�

of (2.11) and becomes

LI
�
= P�1���

IP: (3.42)

Appendix D contains the proof. The hypothesis of Theorem 6, if satisfied, implies (2.14) and (2.23), which
in turn, by Theorem 2, implies (2.24). As shown previously (just after Theorem 2), (2.24) implies that
LI

�
f is an exact solution to (2.1) for all f such that Prf = f . The special case of � = 0 in (3.35) corre-

sponds to conventional substructuring and its variants as currently practiced, with the zero frequency limit
corresponding to Guyan condensation. For � = 0, Prf = f implies f = P�1�0Pf , so that

f = P�1
 
fm
0

!
: (3.43)

The slave DOF hence cannot be loaded for conventional substructuring if LI
�
f is to retain its exact solution

status for that case. The idea of using � as in (3.35) and (3.36) has been presented before [52, 20, 49], but
its use in connecting reduced basis methods with substructuring methods is emphasized here. There is some
similarity in the use of (3.34) for � and the Modal Reduction method (see (10) of Ref. [21, p. 327], for
example), which only considers the case in which the reduced basis consists of system modes. The Modal
Reduction method, however, builds the reduced system �yL� from the transformation matrix (I �T )T , and
the similarity ends with (3.34).

3.2.1 Reduced-Basis/Substructuring Relationship

If the number of columns of �r is equal toM, the number of master DOF, then the reduced basis approach
of Section 3.1 and the version of substructuring given by Theorem 6 can be directly related to each other.

Theorem 7 Assume the hypothesis of Theorem 6. Take the columns of

�r = P
�1��

 
[~�r]m
0

!
; (3.44)

as the reduced basis forR(L), and similarly, take the columns of

�d = P
�1��

 
[~�d]m
0

!
(3.45)

as the reduced basis for D(L), where � satisfies (3.36), and [~�r]m and [~�d]m are each square and nonsin-
gular. For comparison purposes, denote the substructuring version of LI

�
from (3.42) as LI

�

sub. For �r and
�d given by (3.44) and (3.45), respectively, denote the reduced basis version of LI

�
from (3.14) as LI

�

rb.
The LI

�

rb and LI
�

sub are directly related to each other by

LI
�

rb = LI
�

sub[�r(�r
y�r)

�1�r
y]: (3.46)
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The proof is deferred to Appendix D. Note that �r(�r
y�r)

�1�r
y of (3.46) is idempotent. This im-

plies that LI
�

rb and LI
�

sub coincide over the range of �r(�r
y�r)

�1�r
y. Applying (3.46) to �r and using

[�r(�r
y�r)

�1�r
y]�r = �r to the result leads to LI

�

rb�r = LI
�

sub�r. This implies that LI
�

rb and LI
�

sub

coincide over the span of the columns of �r.

3.3 Smoothing/Homogenization Methods

Fishman and McCoy (Ref. [13, pp. 47-48]) have unified smoothing and homogenization under one formal-
ism. Proof that the Fishman and McCoy formalism is a subformalism of this report constitutes proof that
smoothing and homogenization are encompassed by this report. Smoothing methods presuppose the exis-
tence of a “comparison operator” L0, a user-chosen approximation to the system operator L of (2.1). The
term is taken from applications involving the smoothing of heterogeneous material response in which the
L and L0 typically represent the system operator of a heterogeneous media and an associated “comparison
media,” respectively. The comparison media is often assumed to be spatially homogeneous with constant
constitutive parameters which are “close enough” to the spatially fluctuating ones of L to make the differ-
ence between L and L0 a perturbation. In the abstract case, the comparison operator L0 is a linear operator
that is presumed to satisfy, by definition, the conditions

N (L0) = f0g (3.47)

L0P = PrL0 (3.48)

for Pr of Theorem 2 and P , a linear idempotent operator for which R(P ) � D(L). Condition (3.47)
guarantees that L0�1 exists. In applications involving the smoothing of the linear response of stochas-
tic heterogeneous materials, for example, the P and Pr are usually both taken to be equal to a common
ensemble-averaging projector. A general formalism for smoothing is summarized in the following theorem.

Theorem 8 Let L0 be a linear operator satisfying the conditions (3.47) and (3.48). Define ÆL = L�L0 for
L of (2.1), so that

L = L0 + ÆL: (3.49)

If ��1 exists for
� = L0 + (I � Pr)ÆL (3.50)

and Pd is defined by
Pd = [I � ��1(I � Pr)ÆL]P; (3.51)

then (2.23) and

PPd = P (3.52)

Pd
2 = Pd (3.53)

Leff =
n
L0 + Pr(ÆL)[I � ��1(I � Pr)(ÆL)]

o
P

= Pr
n
L0 + [I � (ÆL)��1(I � Pr)](ÆL)P

o
; (3.54)

for Leff given by (2.10).

Corollary 3 Under the hypothesis of Theorem 8, if the constraint

Pr(ÆL)P = 0 (3.55)
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is satisfied, then

Pd = [I � ��1ÆL]P (3.56)

Leff =
h
L0 � Pr(ÆL)�

�1(ÆL)
i
P

= Pr
h
L0 � (ÆL)��1(ÆL)P

i
(3.57)

for Leff given by (2.10).

Proof: LetG=��1(I�Pr) so that�G= (I�Pr), and 0 = Pr(I�Pr) = Pr�G= Pr[L0+(I � Pr)ÆL]G=
L0PG by (3.50) and (3.48). This means thatR(PG)� N (L0), so that PG = 0 by (3.47). This proves

P��1(I � Pr) = 0: (3.58)

Using this and (3.51) in PPd = P [I � ��1(I � Pr)ÆL]P = P proves (3.52). Using (3.51) and (3.52) in
Pd

2 = [I � ��1(I � Pr)ÆL]PPd = [I � ��1(I � Pr)ÆL]P = Pd proves (3.53). To prove (2.23), take
u 2 R(Pd) so that u = Pdu = [I � ��1(I � Pr)ÆL]Pu by (3.51) and (3.53). (An idempotent operator
acts as the identity over its range.) This leads to (I � P )u = ���1(I � Pr)(ÆL)Pu, so that �(I �
P )u = �(I � Pr)(ÆL)Pu. However, (I � Pr)L(I � P ) = (I � Pr)[L0 + ÆL](I � P ) = L0(I � P ) +
(I � Pr)ÆL(I � P ) = [L0 + (I � Pr)ÆL](I � P ) = �(I � P ) by (3.49), (I � Pr)L0 = L0(I � P ) from
(3.48), the idempotent property of P (and of I � P ), and (3.50). Substituting this into the previous result
gives (I � Pr)L(I � P )u = �(I � Pr)(ÆL)Pu. The interim results PrL(I � P ) = Pr(ÆL)(I � P ) and
(I � Pr)LP = (I � Pr)(ÆL)P follow from PrL0(I � P ) = L0P (I � P ) = 0 and (I � Pr)L0P = (I �
Pr)PrL0 = 0, respectively. Substituting the latter interim result into the previous result gives (I�Pr)L(I�
P )u = �(I � Pr)LPu, so that 0 = (I � Pr)L(I � P )u+ (I � Pr)LPu = (I � Pr)Lu. Since u 2 R(Pd)
was arbitrary, (2.23) is proven. Finally, using (3.51) in (2.10) for Leff leads to

Leff = PrL[I � ��1(I � Pr)ÆL]P

= PrLP � PrL�
�1(I � Pr)(ÆL)P

= Pr[L0 + ÆL]P � PrL(I � P )�
�1(I � Pr)(ÆL)P

= L0P + Pr(ÆL)P � Pr(ÆL)(I � P )�
�1(I � Pr)(ÆL)P

= L0P + Pr(ÆL)P � Pr(ÆL)�
�1(I � Pr)(ÆL)P (3.59)

when using (3.49), (I�P )��1(I�Pr) = ��1(I�Pr) from (3.58), (3.48), PrL(I�P ) = Pr(ÆL)(I�P ),
and (I � P )��1(I � Pr) = ��1(I � Pr) again, respectively. The two right-hand sides of (3.54) are just
rearrangements of (3.59), where (3.48) was used in the latter.

The Leff of Theorem 8 takes either of the forms

Leff = (Lred)dP

= Pr(Lred)r (3.60)

when defining the reduced system operators

(Lred)d = L0 + Pr(ÆL)[I � ��1(I � Pr)(ÆL)] (3.61)

(Lred)r = L0 + [I � (ÆL)��1(I � Pr)](ÆL)P; (3.62)

which simplify to

(Lred)d = L0 � Pr(ÆL)�
�1(ÆL) (3.63)

(Lred)r = L0 � (ÆL)��1(ÆL)P (3.64)
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when (3.55) is satisfied. Define (Leff I)r and (Leff I)d as

(Leff
I)r = (Lred)

�1
r Pr (3.65)

(Leff
I)d = P (Lred)

�1
d ; (3.66)

so that the choice of (Lred)r for the reduced operator leads to

Leff (Leff
I)r = Pr; (3.67)

which gives (2.14) when operating on (3.67) from the right with Pr. The choice (Lred)d leads to

(Leff
I)dLeff = P; (3.68)

which gives (2.13) when operating on (3.68) from the left with Pd. Operating on (3.67) on the left by (3.65)
shows that (Leff I)r is an outer generalized inverse of Leff . Similarly, operating on (3.68) on the right by
(3.66) shows that (Leff I)d is an outer generalized inverse of Leff . Taking LI

�
from (2.11) leads to

LI
�
= PdLred

�1Pr (3.69)

for generic Lred; that is, either (Lred)r or (Lred)d can be substituted for Lred in (3.69).

If f satisfies the constraint
Prf = f; (3.70)

so that f 2 R(Pr), then
u = LI

�
f (3.71)

is possibly an exact solution to (2.1). For the choice of (Lred)r as the reduced operator, (2.23) from Theo-
rem 8 and (2.14) together imply (2.24) by Theorem 2. Assuming that (Lred)�1r f exists, (2.24) and (3.70)
imply that (3.71) is a solution to (2.1). For the choice of (Lred)d as the reduced operator, let g be the solution
to

(Lred)dg = Prf (3.72)

subject to the constraint that
Pg = g (3.73)

so that, if it exists, g 2 R((Lred)
�1
d
Pr)\R(P ). The problem (3.72) is the “reduced version” of (2.1) for this

case. Define u by
u = Pdg; (3.74)

so that (3.71) follows from (3.69) with (Lred)d substituted for Lred. Operating on (3.74) on the left by P ,
using (3.52) on the results to get Pu = Pg, and then substituting g for Pg from (3.73) gives

Pu = g: (3.75)

The constraint (3.70) and

Lu = LPdg

= PrLPdg

= Leffg

= (Lred)dPg

= (Lred)dg

= Prf;



A Generic Bilevel Formalism for Unifying and Extending Model Reduction Methods 23

which follows from (3.74), (2.23), (2.10), (3.60), (3.73), and (3.72), respectively, show that u is a solution
to (2.1).

The formalism of Fishman and McCoy (Ref. [13, pp. 47-48]) is a subformalism of this report corre-
sponding to (3.70), (Lred)d as the reduced operator choice, the constraint (3.55),

Pr = P (3.76)

for a special class of P and a specific choice of L0. For this case, (3.72) reduces ton
L0 � P (ÆL)[L0 + (I � P )ÆL]�1(ÆL)

o
Pu = f (3.77)

on use of (3.75), (3.70), (3.63), (3.50), and (3.76). Fishman and McCoy use the notation Pv = < v > for
generic (response or stimulus) v 2 D(L) orR(L), where < v > represents the macroscale component of v.
Implicit use of the admissibility test Pf = f , from (3.70) and (3.76), for any given stimulus f is made by
Fishman and McCoy Ref. [13, pp. 47-48]; f is a “forcing with variations restricted to the macroscale.” This
is also true in the formalism of Steinberg and McCoy (Ref. [16, pp. 1135-1136]), as seen by < u0 > = u0
in (19) and (22) of Ref. [16, p. 1135] when making the notational association f ! u0. If P is restricted so
as to satisfy the properties

P < A > = < A > P (3.78)

PAP = < A > P (3.79)

for generic linear operator A, and if L0 is taken to be

L0 =< L >; (3.80)

thenPL0 =L0P , corresponding to (3.48) with (3.76), is immediately seen to be true by (3.78). P (ÆL)P = 0,
corresponding to (3.55) with (3.76), is also true and can be seen by

P (ÆL)P = P (L� < L >)P

= PLP � P < L > P

= < L > P� < L > P 2

= < L > P� < L > P

= 0;

when using (3.49) and (3.80), (3.78), and (3.79), and P 2 = P , respectively. The constraint (3.78) on P
corresponds to the constraint (21) of Steinberg and McCoy (Ref. [16, p. 1135]), but it does not seem to be
explicitly acknowledged by Fishman and McCoy. The relation (3.77) takes the form

f< L > �< (ÆL)[< L > + (I � P )(ÆL)]�1(ÆL) >g< u > = f (3.81)

when using (3.80), (3.79), and then Pu! < u >. Equation (3.81) is exactly the same as the combination
of (5) and (6) of Fishman and McCoy (Ref. [13, p. 48]) if the notational adjustment ÆL ! L0 is made in
(3.81).

4. BISCALE CONJUGATE APPROXIMATION

Consider a class of methods under the umbrella of this formalism for which the �-embedding for the conju-
gate approximation is based on the premise that there are two relevant time scales, one governing the “fast”
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part of the overall response and one governing the “slow” part of the response. Specializing the derivative-
expansion version (Ref. [8, pp. 230-232]) of the multiple scales perturbation method to a biscale expansion
in time prescribes that

@

@t
!

@

@t0
+ �

@

@t1
(4.1)

be substituted for the time derivatives in L to obtain T (�), where t0 is the time variable associated with the
fast time scale and t1 is the time variable associated with the slow time scale. (The choice of two scales is
based not only on its simplicity and common occurence, but also that one must be more cautious in the use
of the multiple scales approach for three or more scales [58].) This embedding leads to finite expansions for
T (�) in � for many common L’s, which are local in time.

4.1 Frequency Window Variant

A variant of this temporal biscale approach is to use the Fourier representation of the t0-dependence in the
perturbation, so that t0-dependence ! !0-dependence. As t0 is associated with the fast time scale, there
should be a “cutoff” value of !0 below which the t1-dependence dominates. For those cases for which
L(@=@t) satisfies

Ft0L(
@

@t0
+ �

@

@t1
) = L(i!0 + �

@

@t1
)Ft0; (4.2)

whereFt0 denotes the Fourier transform of the t0-dependence into!0-dependence, the continuation is taken
to be

T (�; !0) = L(i!0 + �
@

@t1
): (4.3)

Substituting T (�; !0) of (4.3) into (4.2) leads to

L(
@

@t0
+ �

@

@t1
) = Ft0

�1T (�; !0)Ft0 (4.4)

L(
@

@t0
+ �

@

@t1
)
�1

= Ft0
�1T (�; !0)

�1Ft0 (4.5)

after some rearranging. This indicates that

eL�1 = Ft0�1T (�; !0)�1Ft0 j� = 0!1 (4.6)

can be used in place of (2.33) as the conjugate approximation of L�1. For those cases satisfying (4.2),

T0
�1 = T�1(�; !0)j�! 0

= L(i!0)
�1; (4.7)

so that T0�1f can be interpreted as the time-harmonic response of L to f at the frequency �, where
!0 = 2��. At a given frequency, the perturbational expansion about � = 0 itself can be interpreted as a
transient departure, on the t1 (slow) time scale, from the time harmonic solution at � = !0=2�. The only
inversion required to obtain the 
j operators in (2.61) is T0�1, so that obtaining the 
j’s as a function of !0
reduces to time-harmonic re-analysis. A practical computational approximation is to restrict the range of �
values to a given frequency window of interest for the particular problem (2.1). At least one case satisfying
(4.2) is that for which (2.1) is a set of linear coupled ordinary differential equations in time with constant
coefficients, L then is a polynomial in the time derivative operator.
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4.1.1 Linear Coupled O.D.E. Systems with Constant Coefficients

The ordinary differential equation setting is generic but at the same time well-rooted in concrete applications.
This setting encompasses many useful classes of models, with examples arising from finite element methods
(FEMs) and large linear electronic circuit response. Additionally, this setting is sufficiently specific in scope
as to allow the explicit construction of the conjugate approximation results in terms of generic coefficient
matrices for the differential equations. A summary of these results is given by the following theorem, whose
proof is deferred to Appendix E.

Theorem 9 Let the system operator L for the J th order set of ordinary differential equations (2.1) be
denoted by

L =
JX
j=0

Lj
@j

@tj
; (4.8)

where the Lj coefficients are constant, square matrices each of the same size. Applying the biscale pertur-
bation of (4.3) to (4.8) leads to (2.34) for

Tj = bTj(!0) @j
@t1

j
(4.9)

bTk(!0) =
JX

m=k

 
m
k

!
(i!0)

m�kLm; (4.10)

where the binomial coefficients are  
m
k

!
=

m!

k!(m� k)!
: (4.11)

The conjugate approximation continuation (2.50) reduces to

T (�; !0)
�1 �

MX
j=0

�j b	j(!0)
@j

@t1
j
; (4.12)

where the component matrices b	j are recursively given by

b	j = H0j
bT�10 �

JX
k=1

Hjk
bT�10

bTk b	j�k ; (4.13)

the !0 dependence being implied. The Hjk’s are defined by (2.38).

The conjugate approximation to L�1 given by (4.6) reduces to

eL�1 = Ft0�1
24 MX
j=0

b	j(!0)
@j

@t1
j

35Ft0 : (4.14)

Note that (4.9) and (4.10) produce bTJ = LJ (4.15)

bT0 =
JX

m=0

(i!0)
mLm

= T0 (4.16)

as important special cases. The bulk of the work in obtaining eL�1 is in computing the time harmonic
response bT�10 for values of !0 corresponding to the chosen frequency window.
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4.2 Alternative ODE-Model Methods for Reduced Basis

In the case of reduced basis model reduction, an alternative variant of the ordinary differential equation
biscale method of Section 4.1.1 serves as a precursor to and a generalization of the force derivative method.
For (I � LIL)L�1 = L�1 � LI in (2.4), an alternative form for (2.32) is

L�1 � �(�)j� = 0!1 (4.17)

for
�(�) = LI

�
+ [L�1 � LI

�
](�): (4.18)

In this case, for which the �-continuation of the conjugate approximation is extended to include the entire
residual term L�1 � LI

�
, one gets

�(�) = �d(�r
yL�d)

�1�r
y +(

L(
@

@t0
+ �

@

@t1
)
�1

� �d[�r
yL(

@

@t0
+ �

@

@t1
)�d]

�1�r
y

)
= �d(�r

yL�d)
�1�r

y +

Ft0
�1
n
T (�; !0)

�1 � �d[�r
yT (�; !0)�d]

�1�r
y
o
Ft0 ; (4.19)

when using reduced basis version (3.14) of LI
�
, (4.4), and (4.5). If �r and �d are independent of � and !0,

then Lemma 5 of Appendix E can be used with � ! t1, b
j ! b j , and bTj ! �r
y bTj(!0)�d from (2.34),

(4.9), and T (�)! �r
yT (�; !0)�d. This results in

[�r
yT (�; !0)�d]

�1 �
MX
j=0

�j b j(!0) @j
@t1

j
; (4.20)

where the component matrices b j are recursively given by

b j = H0j(�r
y bT0�d)

�1 �

"
JX

k=1

Hjk(�r
y bT0�d)

�1(�r
y bTk�d) b j�k

#
; (4.21)

the !0 dependence is implied. Substituting (4.12) and (4.20) into (4.19) and the results into (4.17) leads to

L�1 � �d(�r
yL�d)

�1�r
y+

Ft0
�1

8<:
MX
j=0

[b	j(!0)� �d
b j(!0)�r

y]
@j

@t1
j

9=;Ft0 (4.22)

as a reduced basis hybrid method for sets of coupled ordinary differential equations, where the b	j’s are
recursively given by (4.13).

4.2.1 Tunable Force Derivative and Generalized Lanczos Methods

One can generate a systematic approximation to the reduced basis hybrid method just developed by expand-
ing

[b	j(!0)� �d
b j(!0)�r

y] =
1X
k=0

(!0 � !
�)k

k!

8<:@[b	j � �d
b j�r

y]
k

@!0
k

9=;
!0! !�
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about the value !� as a Taylor series, assuming an analytic dependence on !0. If only the first term in the
expansion is kept, one gets

Ft0
�1

8<:
MX
j=0

[b	j(!0)� �d
b j(!0)�r

y]
@j

@t1
j

9=;Ft0
� Ft0

�1

8<:
MX
j=0

[b	j(!
�)� �d

b j(!�)�r
y]
@j

@t1
j

9=;Ft0
=

8<:
MX
j=0

[b	j(!
�)� �d

b j(!�)�r
y]
@j

@t1
j

9=;Ft0�1Ft0
=

MX
j=0

[b	j(!
�)� �d

b j(!�)�r
y]
@j

@t1
j

on the right-hand side of (4.22), so that

L�1 � �d(�r
yL�d)

�1�r
y +

MX
j=0

[b	j(!
�)� �d

b j(!�)�r
y]
@j

@t1
j

(4.23)

results as the zeroth-order approximation to (4.22). It is proven later that the conventional force derivative
method results from the !� ! 0 subcase of (4.23), so that (4.23) represents a tunable generalization of the
force derivative method.

Taking the above Taylor expansion in (4.19) leads to

�(�) = �d(�r
yL�d)

�1�r
y +n

T (�; !�)�1 � �d[�r
yT (�; !�)�d]

�1�r
y
o

(4.24)

when keeping the first expansion-term only and canceling the Fourier transform with its inverse. The gen-
eralized Lanczos reduced basis method is based on the idea of finding �d such that

�(�) = �d(�r
yL�d)

�1�r
y +O(�k) (4.25)

for (4.24) for some chosen k > 0. For such a choice of �d, only the �d(�r
yL�d)�1�r

y term needs to be
kept in (4.23). Such a �d can be constructed if one assumes that the admissible f ’s to be considered for
(2.1) are to be taken exclusively from the set V , where f 2 V implies

f = Fg(t) (4.26)

for some g. The matrix F common to all of the f ’s is time-independent, and g is a time-dependent vector. In
mechanics for example, (4.26) represents a superposition of static loads (columns of F ) using time-varying
coefficients (components of g). Choose the block columns of �d as b	j(!�)F in the left-to-right sequence
j = 0; 1; : : :; k � 1, so that

�d(!
�) =

� b	0(!
�)F b	1(!

�)F � � � b	k�1(!
�)F

�
; (4.27)

where the b	j’s are given by (4.13). The number of columns of F (and correspondingly, components of g)
should be small compared to the size of (4.8), so that the number of columns of �d, is small compared to
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the number of rows of �d. Taking M ! k � 1 and !0 ! !� in (4.12), applying the result to (4.26), and
then substituting�d for the right-hand side of (4.27) leads to

T (�; !�)�1f =
k�1X
j=0

[b	j(!
�)F ]�j

@jg

@t1
j
+O(�k)

= �d

0BBBBB@
g

� @g
@t1
...

�k�1 @k�1g

@t1
k�1

1CCCCCA+ O(�k)

= �dh(�) +O(�
k)

for h(�) defined with block rows �j@jg=@t1
j in the top-to-bottom sequence j = 0; 1; : : :; k� 1. Using this

in

�d[�r
yT (�; !�)�d]

�1�r
yf

= �d[�r
yT (�; !�)�d]

�1�r
yT (�; !�)T (�; !�)�1f + O(�k)

= �d[�r
yT (�; !�)�d]

�1�r
yT (�; !�)�dh(�) +O(�

k)

= �dh(�) +O(�
k)

= T (�; !�)�1f +O(�k)

shows that (4.24) reduces to (4.25) for the choice of (4.27) for �d. For first or second order (J = 1 or
2) cases, this resembles the method of Häggblad and Eriksson [29]. The span of the columns of �d, for
�d given by (4.27), will later be shown to reduce to a conventional Krylov subspace under special circum-
stances. In such cases, this becomes the conventional Lanczos method, with proper normalization of �d’s
columns.

4.3 Conventional Force Derivative Lanczos Submethods

For the linear dynamic mechanics class of finite-element models for which the force-derivative and Lanczos
methods were originally developed, the ordinary differential equations are second order with real, constant,
symmetric matrix coefficients. For the symmetric case, �d = �r = � is reasonable. The second-order
representation (3.2) of (2.1) is given in terms of (4.8) for J = 2 as

L0 = K (4.28)

L1 = C (4.29)

L2 = M; (4.30)

where u(t) and f(t) of (2.1) are interpreted as the displacement response and applied loads, respectively.
For an equivalent first-order (or state) representation [38, p. 12], L is given by (4.8) for J = 1 and

L1 =

 
0 M

M C

!
(4.31)

L0 =

 
�M 0
0 K

!
; (4.32)
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where the L0 and L1 matrices are constant, real, and symmetric since this is true for M , C, and K, and
where

f !

 
0
f

!
(4.33)

u !

 
du
dt

u

!
(4.34)

are used in (2.1). The development that follows will use the second-order representation.

Equation (4.10) with !0 ! !� reduces to

bT0 = �!�2M + i!�C +K (4.35)bT1 = 2i!�M + C (4.36)bT2 = M (4.37)

when using (4.28) through (4.30). The reduced basis versions of these coefficients become

�T bT0� = �!�2I + i!�� +�2 (4.38)

�T bT1� = 2i!�I + � (4.39)

�T bT2� = I (4.40)

when using (3.20), (3.15), and (3.21). The b j component matrices are recursively given by (4.21), which
reduces to

b 0 = (�T bT0�)�1 (4.41)b 1 = �(�T bT0�)�1(�T bT1�)(�T bT0�)�1 (4.42)b m = �(�T bT0�)�1h(�T bT1�) b m�1 + (�T bT2�) b m�2i ; (4.43)

for m � 2. The b	j component matrices are recursively given by (4.13), which reduces to

b	0 = bT�10 (4.44)b	1 = � bT�10
bT1 bT�10 (4.45)b	m = � bT�10

h bT1 b	m�1 + bT2 b	m�2

i
(4.46)

for m � 2.

4.3.1 Force Derivative as a Submethod

The force-derivative method corresponds to the limiting subcase of !� ! 0, so that in the second-order-
representation (4.35) through (4.37) reduce to

bT0 = K (4.47)bT1 = C (4.48)bT2 = M: (4.49)
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The reduced basis versions of these coefficients (4.38) through (4.40) become

�T bT0� = �2 (4.50)

�T bT1� = � (4.51)

�T bT2� = I: (4.52)

The b j component matrices of (4.41) through (4.43) reduce to

b 0 = ��2 (4.53)b 1 = ���2���2 (4.54)b m = ���2
h
� b m�1 + b m�2i (4.55)

for m � 2, when using (4.50) through (4.52). The b	j of (4.44) through (4.46) reduce to

b	0 = K�1 (4.56)b	1 = �K�1CK�1 (4.57)b	m = �K�1
h
C b	m�1 +M b	m�2

i
(4.58)

for m � 2, when using (4.47) through (4.49). Taking !�! 0 is somewhat of a contradiction in the context
of t0 as the fast variable, for which !0 (and hence !�) is associated with “higher” frequencies. However,
only the t1 (slow) time scale remains (take !�! 0 and �! 1 in (4.3)), suggesting t1! t.

Using the first three terms of (4.53) through (4.55), the first three terms of (4.56) through (4.58),
��2 ! 
�2, � ! �, !� ! 0, and t1 ! t for the slow time all in (4.23) reproduces (38) of Ref. [38,
p. 29]. (The ��2 and � substitutions account for notational discrepencies between Ref. [38] and this re-
port.) For the case of an arbitrary number of terms, taking t1 ! t and !� ! 0 in (4.23), substituting this
result for L�1 into L�1f (from (2.1)), and then using the notational associations

b�  ! � (4.59)bq  ! (�TL�)�1�Tf (4.60)

Q(j)  !
@j

@t1
j
f for j � 0 (4.61)

A1;j  ! b j for j � 0 (4.62)

B1;j  ! b	j for j � 0 (4.63)

reproduces the conventional force derivative results (39) of Ref. [38, p. 30]. Proof of this essentially hinges
on proving the correspondence between the b j and b	j coefficients of (4.53) through (4.58) of this report
with the A1;j and B1;j coefficients of Ref. [38, p. 30] and [59, p. 716]. To show this, the equations given
by both Ref. [38, p. 30], and by (A8), (A9), (A16), and (A17) of Ref. [59, p. 716], for the A1;j and B1;j

coefficients are reproduced here as

A1;j = �
�2�A1;j�1 � 
�2A2;j�1 for j � 1 (4.64)

A2;j = A1;j�1 for j � 1 (4.65)

A1;0 = 
�2 (4.66)

A2;0 = 0 (4.67)
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and

B1;j = �K�1CB1;j�1 �K
�1MB2;j�1 for j � 1 (4.68)

B2;j = B1;j�1 for j � 1 (4.69)

B1;0 = K�1 (4.70)

B2;0 = 0; (4.71)

respectively. (The notation 
�2 and � of Ref. [59] corresponds to ��2 and � of this report, respectively.
The “hats” on b
�2 and b� of Ref. [38] have been “dropped” in favor of the notation of Ref. [59].) It is readily
verified that 
�2! ��2 and �! � in (4.66), (4.67), and the j = 1 case of (4.64) lead to

A1;1 = ��
�2���2; (4.72)

and that (4.70), (4.71), and the j = 1 case of (4.68) lead to

B1;1 = �K
�1CK�1: (4.73)

Equations (4.53), (4.54), and (4.62) are in agreement with 
�2 ! ��2 in (4.66) and (4.72), and equations
(4.56), (4.57), and (4.63) are in agreement with (4.70) and (4.73). Equations (4.62) and (4.63) are verified
for j = 0; 1. Taking j ! j0 � 1 and dropping the prime, equation (4.65) leads to

A2;j�1 = A1;j�2 for j � 2;

and (4.69) leads to
B2;j�1 = B1;j�2 for j � 2:

Substituting these into (4.64) and (4.68) leads to

A1;j = ��
�2�A1;j�1 ���2A1;j�2 for j � 2 (4.74)

and
B1;j = �K

�1CB1;j�1 �K
�1MB1;j�2 for j � 2, (4.75)

respectively, when using 
�2 ! ��2 and � ! �. Substituting (4.62) into (4.74) and (4.63) into (4.75)
leads to (4.55) and (4.58), respectively. Equations (4.62) and (4.63) are verified for j � 2 as well. Taking
t1 ! t and !� ! 0 into (4.23), substituting this result for L�1 into L�1f , and then using (4.53) through
(4.58) in the results is collectively equivalent to the conventional force derivative results of Ref. [38, p. 30]
for second-order formulated systems.

4.3.2 Lanczos as a Submethod

In the limiting subcase !�! 0, (4.13) reduces to (4.56) through (4.58) for the b	j’s defining � in (4.27). If
one takes C = 0 in (4.56) through (4.58), they further reduce to

b	0 = K�1 (4.76)b	2j�1 = 0 for j � 1 (4.77)b	2j = (�K�1M)jK�1 for j � 1, (4.78)

so that (4.27) reduces to

� =
�
K�1F (�K�1M)K�1F � � � (�K�1M)`K�1F

�
(4.79)
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after eliminating the zero columns arising from the b	j ’s of odd j, where ` = (k � 1)=2 for even k � 1 and
` = (k � 2)=2 for odd k � 1. Except for the (irrelevant) alternating sign with each power of �K�1M , the
columns of � in (4.79) are seen to form a block version of the Krylov sequence (Ref. [24, p. 566]) tradition-
ally associated with L specialized to J = 2 in (4.8). The initial block K�1F of (4.79), whose columns are
the static solutions to the loads of the columns of F , is the usual recommended initializing choice (Ref. [24,
p. 568]) for the Krylov sequence in reduced basis applications. (The case for which F has just one column
and g just one component results in the standard, “nonblock” version of the Krylov sequence.) The con-
ventional Lanczos method uses a reduced basis consisting of the above Krylov sequence, which has been
orthonormalized with respect to the mass matrix.

One might suspect that the C = 0 assumption may hurt the Lanczos method’s ability to handle general
damping cases, and some evidence of this is found in the conclusions of Ref. [36]. In particular, the force-
derivative method, which uses a finite set of the nonzero-C b	j ’s given by (4.56) through (4.58), efficiently
and accurately handles the nonproportional damping case of Ref. [36], in contrast to the Lanczos method.
Nevertheless, one possible advantage to the usual Krylov sequence (from the C = 0 assumption) in con-
junction with the orthonormalization process is that together they produce a tridiagonal reduced problem
(see Nour-Omid and Clough (Ref. [24, pp. 567, 569]) or Golub and Van Loan (Ref. [60, p. 477])).
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Appendix A

A. PROOF OF THEOREM 2

The following lemmas are preliminary to proving theorem 2.
Lemma 1 Given operators Pd, Pr , and T , the operator Pd(PrTPd)IPr, when it exists, is an outer gener-
alized inverse of T .

Proof: SubstitutingPd(PrTPd)IPr for AI in AIAAI leads to

Pd(PrTPd)
IPrTPd(PrTPd)

IPr = Pd(PrTPd)
I(PrTPd)(PrTPd)

IPr

= Pd(PrTPd)
IPr;

proving the lemma.

Lemma 2 Given a fixed linear operator T and two fixed linear, idempotent Pd and Pr, PdT IPr is unique
for all T I such that

PdT
IT = Pd (A.1)

TT IPr = Pr (A.2)

are simultaneously true.

Proof: Suppose that there are two outer generalized inverses of T , label them T1
I and T2I , each of which

satisfied (A.1) and (A.2) simultaneously. They would obviously satisfy

PdT1
IT = PdT2

IT (A.3)

TT1
IPr = TT2

IPr; (A.4)

and because they are outer generalized inverses of T , they would also satisfy

T1
ITT1

I = T1
I

T2
ITT2

I = T2
I ;

and hence

PdT1
ITT1

IPr = PdT1
IPr (A.5)

PdT2
ITT2

IPr = PdT2
IPr: (A.6)

Substituting (A.4) into (A.5), and (A.3) into (A.6), leads to

PdT1
ITT2

IPr = PdT1
IPr

PdT1
ITT2

IPr = PdT2
IPr;

respectively. These final two equations clearly show that PdT1IPr = PdT2
IPr, and the lemma’s proof is

complete.

37
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Lemma 3 Given two linear idempotent operators P and �,

P� = � �!

R(�) � R(P ) (A.7)

P� = P �!

R(P ) � R(�) : (A.8)

Proof: If t 2R(�) then t=�t= P�t= Pt so that t 2R(P ), proving (A.7). The relation P�= P implies
P (I ��) = 0, which implies (I � P )(I ��) = (I ��), which in turn impliesR(I ��) �R(I � P ) by
(A.7). This, in conjunction withR(I ��) = N (�) andR(I � P ) = N (P ), leads toN (�) � N (P ). Us-
ing the fact thatAC �BC impliesB �A for genericA andB,N (�)C =R(�)�f0g, andN (P )C =R(P )�
f0g in the results leads to R(P ) � f0g � R(�)� f0g, where the superscript C denotes the (set) comple-
ment. The union of both sides of this result with f0g, along with 0 2 R(�) and 0 2 R(P ), leads to (A.8).

The proof of Theorem 2 itself is now given as follows.

� To show that LI
�

is an outer generalized inverse of L, use (2.10) to substitute PrLPd for Leff in
(2.11), and then apply Lemma 1, with T ! L, to the result.

� To prove (2.12), let v 2 N (PrL). One then has (I �LI
�
L)v = (I � PdLeff

IPrL)v = v from (2.11)
for idempotent (I � LI

�
L), so that v 2 R(I � LI

�
L), proving (2.12).

� The relationLI
�
LPd = PdLeff

IPrLPd = PdLeff
ILeff = Pd follows from (2.11), (2.10), and (2.13),

proving that (2.16) follows from (2.13). The converse, that (2.13) follows from (2.16), is also clearly
true.

� To prove (2.15) follows from (2.13), one first notes that application of (A.7) of Lemma 3, withP ! Pd
and �! LI

�
L, to PdLI

�
L = Pd

2Leff
IPrL = PdLeff

IPrL = LI
�
L leads to R(LI

�
L) � R(Pd).

However, application of (A.7) of Lemma 3, with P ! LI
�
L and � ! Pd, to (2.16) leads to

R(Pd) � R(LI
�
L). Together these results prove R(LI

�
L) = R(Pd), which combines with

R(LI
�
L) = N (I � LI

�
L) to prove (2.15).

� To prove (2.17) follows from (2.13), one starts with [R(Pd)\N (PrL)]� [R(Pd)\R(I � L
I�L)] =

[N (I � LI
�
L) \ R(I � LI

�
L)] = f0g, which follows from (2.12) and (2.15). Substituting this into

N (Leff) = f[R(Pd) \ N (PrL)] [ N (Pd)g, which follows from (2.10), leads to (2.17) upon using
0 2 N (Pd).

� The relationPrLLI
�
= PrLPdLeff

IPr =LeffLeff
IPr = Pr follows from (2.11), (2.10), and (2.14),

proving that (2.19) follows from (2.14). The converse, that (2.14) follows from (2.19), is also clearly
true.

� To prove (2.18) follows from (2.14), one first notes that application of (A.8) of Lemma 3, with
P ! LLI

�
and � ! Pr, to LLI

�
Pr = LPdLeff

IPr
2 = LPdLeff

IPr = LLI
�

leads to
R(LLI

�
) � R(Pr). However, application of (A.8) of Lemma 3, with P ! Pr and � ! LLI

�
, to

(2.19) leads toR(Pr)�R(LLI
�
). Together these results proveR(LLI

�
) =R(Pr), which combines

withR(LLI
�
) =N (I � LLI

�
) to prove (2.18).

� To prove (2.20) follows from (2.14), first note thatPrL(I�LI
�
L) = (Pr�PrLL

I�)L= (Pr�Pr)L=
0 follows from (2.19), so that R(I � LI

�
L) � N (PrL). This result combines with (2.12) to prove

(2.20).
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� As T ! Leff in (A.1) and (A.2) of Lemma 2 corresponds to (2.13) and (2.14), respectively, then
(2.11) and Lemma 2 together show that LI

�
is unique when (2.13) and (2.14) are simultaneously

satisfied.

� The relation LI
�
L = PdLeff

IPrL = PdLeff
IPrLPd = PdLeff

ILeff = Pd follows from (2.11),
(2.21), (2.10), and (2.13), proving that (2.22) follows from (2.13) and (2.21).

� The relations (2.21) and (2.22) imply 0 = PrL(I � Pd) = PrL(I � L
I�L) = (Pr � PrLL

I�)L, so
thatR(L)� N (Pr � PrLLI

�
). This proves (2.16), from which (2.13) follows.

� The relation LLI
�
= LPdLeff

IPr = PrLPdLeff
IPr = LeffLeff

IPr = Pr follows from (2.11),
(2.23), (2.10), and (2.14), proving that (2.24) follows from (2.14) and (2.23).

� The relations (2.23) and (2.24) imply 0 = (I � Pr)LPd = (I � LLI
�
)LPd = L(Pd � LI

�
LPd), so

thatR(Pd � LI
�
LPd) � N (L) = f0g. This proves (2.19), from which (2.14) follows.

The proof of Theorem 2 is complete.



Appendix B

B. PROOF OF THEOREM 4

Equations (2.34), (2.35), (2.39), and (2.40) can be rewritten as

T (�) =
1X
j=0

�jHJjTj (B.1)

�b(�) =
1X
j=0

�jHNj�
b
j (B.2)


b(�) =
1X
j=0

�jHMj

b
j ; (B.3)

respectively, where b! R or L, so that

T
R =
1X
j=0

�j

24 jX
k=0

HJkTkHM;j�k

R
j�k

35:
when taking b! R in (B.3), for example. This becomes

T
R =
1X
j=0

�j
"

JX
k=0

HjkHM;j�kTk

R
j�k

#
(B.4)

when using

jX
k=0

HJkAjk =
1X
k=0

HjkHJkAjk

=
JX

k=0

HjkAjk (B.5)

for generic Ajk . Similarly,


LT =
1X
j=0

�j
"

JX
k=0

HjkHM;j�k

L
j�kTk

#
(B.6)

for b! L in (B.3) and Ajk ! 
L
j�kTk in (B.5). For (B.4) and b! R in (B.2), one gets

T
R � �R =
1X
j=0

�j
" 

JX
k=0

HjkHM;j�kTk

R
j�k

!
�HNj�

R
j

#

=
MX
j=0

�j
" 

JX
k=0

HjkHM;j�kTk

R
j�k

!
�HNj�

R
j

#
41
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+
1X

j=M+1

�j
" 

JX
k=0

HjkHM;j�kTk

R
j�k

!
�HNj�

R
j

#

=
MX
j=0

�j
" 

JX
k=0

HjkTk

R
j�k

!
�HNj�

R
j

#

+
1X

j=M+1

�j
" 

JX
k=0

HjkHM;j�kTk

R
j�k

!
�HNj�

R
j

#

=
MX
j=0

�j
" 

JX
k=0

HjkTk

R
j�k

!
�HNj�

R
j

#

+
Max(N;M+J)X

j=M+1

�j
" 

JX
k=0

HjkHM;j�kTk

R
j�k

!
�HNj�

R
j

#
:

The step from the second to the third line uses HM;j�k = 1 for j �M . The last line results from(
j > Max(N;M + J) and
0 � k � J

)
!

(
HM;j�k = 0 and
HNj = 0

)
;

which follows from fj > Max(N;M + J)g ! fj > M + J and j > Ng,
so that HNj = 0 and j � k > M + J � k; but f0 � k � Jg ! fM + J � k �Mg, so that j � k > M

and hence HM;j�k = 0.

Finally, the previous result establishes the equivalence of

MX
j=0

�j
" 

JX
k=0

HjkTk

R
j�k

!
�HNj�

R
j

#
= 0

and (2.41). Solving this for T0
R
j leads to (2.36). The proof of (2.37) and (2.42) from (B.6) is essentially

the same except that 
L
j�kTk and �Lj replace Tk
R

j�k and �Rj , respectively.



Appendix C

C. PROOF OF THEOREM 5

One can prove
R
j =
L

j for each j � 0 by induction, where the initial case for j = 0,
R
0 =
L

0 =A,
follows directly from (2.45) and (2.46). The strategy is to first assume that


L
j�k = 
R

j�k (C.1)

for 1 � k � min(J; j) and then prove that (2.45) and (2.46) subsequently lead to 
R
j = 
L

j . Substituting
(C.1) into the left-hand side of (2.46) with m! j � k leads to


R
j�k = H0;j�kA�

JX
`=1

Hj�k;`

L
j�(`+k)T`A:

Substituting this result into the right-hand side of (2.45) withm! j leads to


R
j = H0jA �

JX
k=1

HjkATk

R
j�k

= H0jA �
JX

k=1

HjkATk

"
H0;j�kA�

JX
`=1

Hj�k;`

L
j�(`+k)T`A

#

= H0jA �
JX

k=1

HjkH0;j�kATkA

+
JX

k=1

JX
`=1

HjkHj�k;`ATk

L
j�(`+k)T`A

= H0jA �
JX
`=1

Hj`H0;j�`AT`A

+
JX
`=1

JX
k=1

Hj`Hj�`;kATk

L
j�(`+k)T`A

= H0jA �
JX
`=1

Hj`

"
H0;j�`A�

JX
k=1

Hj�`;kATk

L
j�(`+k)

#
T`A

= H0jA �
JX
`=1

Hj`

"
H0;j�`A�

JX
k=1

Hj�`;kATk

R
(j�`)�k

#
T`A

= H0jA �
JX
`=1

Hj`

R
j�`T`A

= H0jA �
JX
`=1

Hj`

L
j�`T`A

= 
L
j

43
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when usingHjkHj�k;` =Hj`Hj�`;k (proof follows),
L
(j�`)�k =
R

(j�`)�k by (C.1); (2.45) withm! j�

`, 
R
j�` = 
L

j�` by (C.1) since 1 � ` � min(J; j) in the summation for `, and (2.46) with m! j, re-
spectively. The proof reduces to that of proving that HjkHj�k;` = Hj`Hj�`;k for 1 � k � min(J; j) and
1 � ` � min(J; j).

The general property
Hi�k;j�k = Hij

for all integers i, j, and k, leads to

Hj�k;` = Hj;`+k

= Hj�`;k: (C.2)

One can prove
HjkHj;`+k = Hj;`+k (C.3)

as follows: one has either Hj;`+k = 0 or Hj;`+k = 1. An assumption of Hj;`+k = 0 implies that
HjkHj;`+k = 0. An assumption of Hj;`+k = 1 implies k + ` � j, which in turn implies k � j because
all values of ` are positive, so that Hjk = 1 and HjkHj;`+k = 1. As ` and k have exactly the same range of
values, the proof of the relation

Hj`Hj;`+k = Hj;`+k (C.4)

is essentially the same as that of (C.3). In fact, (C.4) is just a relabeling of (C.3). Substitute Hj�`;k from
(C.2) into the left-hand side of (C.4), substituteHj�k;` from (C.2) into the left-hand side of (C.3), and equate
the results (the right-hand sides of each are equal) to prove HjkHj�k;` =Hj`Hj�`;k.



Appendix D

D. PROOF OF THEOREMS 6 and 7

Proof of Theorem 6: The proof of (3.29) is given by

Pr�r = P�1��P�r

= P�1��
~�r

= P�1
 
Imm 0
� 0

! 
[~�r]m
[~�r]s

!

= P�1
 

[~�r]m
�[~�r]m

!

= P�1
 

[~�r]m
[~�r]s

!
= P�1~�r

= �r;

using (3.35), (3.32), 
 ! � in (3.33), (3.31), (3.34), (3.31) again, and (3.32) again, respectively. The
preliminary result

P�1 ~L��P = P�1
 

~Lmm
~Lms

~Lsm ~Lss

! 
Imm 0
� 0

!
P

= P�1
 

~Lmm + ~Lms� 0
~Lsm + ~Lss� 0

!
P

= P�1
 

~Lmm + ~Lms� 0

�[~Lmm + ~Lms�] 0

!
P

= P�1
 

Lred 0
�Lred 0

!
P

= P�1
 
Imm 0
� 0

! 
Lred 0
0 0

!
P

= P�1��

 
Lred 0
0 0

!
P

= P�1���P

follows from using (3.28) and 
! � in (3.33), ~Lsm + ~Lss� = �[~Lmm + ~Lms�] from (3.36), (3.38), 
! �

in (3.33), and (3.40), respectively. Substituting LPd = P�1 ~LPP�1��P = P�1~L��P from (3.27) and
(3.37) into the previous result leads to

LPd = P
�1���P : (D.1)

45
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Matrix multiplying (D.1) from the left by Pr and substitutingPrP�1�� = P
�1��PP

�1�� = P
�1��

2 =
P�1��, from (3.35) into the result leads to LPd = PrLPd, which proves (2.23). This gives LPd = Leff ,
when using (2.10), which combines with (D.1) to give

Leff = P
�1���P : (D.2)

The Leff I of (3.39) is proven to be an outer generalized inverse of Leff from (D.2) by Leff ILeffLeff I =
P�1�I����

IP = P�1�I��IP = P�1�IP = Leff
I , where �I�� = �I is easily verified from 
! �

in (3.33) and (3.41). The relation (2.13) is proven by PdLeff ILeff = P�1���
I���P = P�1���

I�P =
P�1���0P = P�1��P = Pd when using �I�� = �I again; �I� = �0 from 
 ! 0 in (3.33), and
���0 = �� . The relation (2.14) follows from LeffLeff

I = P�1����
IP = P�1���0P = P�1��P =

Pr. Finally, using �I�� = �I again in LI
�
= PdLeff

IPr = P
�1���

I��P proves (3.42).

Proof of Theorem 7: Matrix multiplying (D.1) on the right by P�1([~�d]m
T
0)T , substituting for � from

(3.40), substituting for PdP�1 = P�1�� from (3.37), and then substituting�d from (3.45) gives

P�1��

 
Lred[~�d]m

0

!
= LP�1��

 
[~�d]m
0

!
= L�d:

Right matrix multiplying (3.44) by ([~�r]m
�1

0) gives

P�1�� = �r

�
[~�r]m

�1
0
�
;

when using ([~�r]m
T
0)T ([~�r]m

�1
0) = �0 for 
 ! 0 in (3.33), and ���0 = ��. Substituting this for

P�1�� into the previous result and then matrix multiplying on the left by �r
y leads to

�r
yL�d = (�r

y�r)
�
[~�r]m

�1
0
� Lred[~�d]m

0

!
= (�r

y�r)[~�r]m
�1
Lred[~�d]m: (D.3)

Inverting (D.3) and matrix multiplying the result on the left by �d gives

�d(�r
yL�d)

�1 = �d[~�d]m
�1
Lred

�1[~�r]m(�r
y�r)

�1

= P�1��

 
Imm

0

!
Lred

�1[~�r]m(�r
y�r)

�1

= P�1��

 
Lred

�1[~�r]m
0

!
(�r

y�r)
�1

= P�1��

 
Lred

�1 0
0 0

!
PP�1

 
Imm 0
� 0

! 
[~�r]m
0

!
(�r

y�r)
�1

= P�1���
IPP�1��

 
[~�r]m
0

!
(�r

y�r)
�1

= LI
�

subP
�1��

 
[~�r]m
0

!
(�r

y�r)
�1

= LI
�

sub�r(�r
y�r)

�1;
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when using

�d[~�d]m
�1

= P�1��

 
Imm

0

!

from (3.45), and then (3.41), 
 ! � in (3.33), (3.42), and (3.44), respectively. Matrix multiplying on the
right by �r

y and then substituting for LI
�

rb from (3.14) leads to (3.46).



Appendix E

E. PROOF OF THEOREM 9

The proof consists of the following two lemmas: Lemma 4 applies directly to the theorem with no
change, and Lemma 5 applies with � ! t1 and b
j ! b	j .
Lemma 4 Under the hypothesis of Theorem 9, applying the biscale perturbation of (4.3) to (4.8) leads to
(2.34) for (4.9) and (4.10).

Proof: Substituting (4.8) into (4.3) gives

T (�; !0) =
JX
j=0

Lj [i!0 + �@=@t1]
j

=
JX
j=0

Lj

24 jX
k=0

�k
 
j

k

!
(i!0)

j�k @k

@t1
k

35
=

JX
j=0

Lj

"
JX

k=0

Hjk�
k

 
j

k

!
(i!0)

j�k @k

@t1
k

#

=
JX

k=0

�k

24 JX
j=0

Hjk

 
j

k

!
(i!0)

j�kLj

35 @k

@t1
k

=
JX

k=0

�k

24 JX
j=k

 
j

k

!
(i!0)

j�kLj

35 @k

@t1
k

=
JX

k=0

�k bTk(!0) @k
@t1

k

=
JX

k=0

�kTk

when using a binomial expansion (exact because it is finite), the definition (2.38) of Hjk twice, (4.10), and
(4.9), respectively.

Lemma 5 If 
j satisfies (2.61) and

Tj = bTj @j
@� j

(E.1)

@k

@�k
bTj = bTj @k

@�k
(E.2)

for 0 � k <1 for each j of 0 � j � J , then


j = b
j

@j

@�j
(E.3)

@k

@�k
b
j = b
j

@k

@�k
(E.4)

49
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for 0 � k <1 for each j of 0 � j �M , where the b
j component operators are recursively given by

b
j = H0j
bT�10 �

JX
k=1

Hjk
bT�10

bTk b
j�k : (E.5)

Proof: Equation (E.1) for j = 0 gives T0 = bT0 and T0�1 = bT�10 . Operating on both sides of (E.2) with
j = 0 by bT�10 leads to

@k

@�k
bT�10 = bT�10

@k

@�k
; (E.6)

which shows that (E.4) is true for j = 0 when using b
0 = bT�10 from (E.5). For j = 0, equation (2.61) gives

0 = T0

�1, which combines with b
0 = bT�10 and T0�1 = bT�10 to give 
0 = b
0, in agreement with (E.3) for
j = 0. Equation (E.3) is also true for j = 0. To prove (E.4) by induction, take j ! m in (E.5) for m > 0
and operate from the left by the linear operator @k=@�k to get

@k

@�k
b
m =

@k

@�k
(�[

JX
k=1

Hmk
bT�10

bTk b
m�k ])

= �[
JX

k=1

Hmk
bT�10

@k

@�k
bTk b
m�k ]

= �[
JX

k=1

Hmk
bT�10

bTk @k
@�k

b
m�k ]

= �[
JX

k=1

Hmk
bT�10

bTk b
m�k ]
@k

@�k

= b
m

@k

@�k

when using (E.6), (E.2) for j = k, (E.4) for all j �m�1, and j!m in (E.5) form> 0 again, respectively.
Equation (E.4) is proven by induction if the b
j component operators are given by (E.5). To prove (E.3) by
induction, assume that (E.3) is true for all j � m � 1 (proven for j = 0) for some finite m > 0. Equation
(2.61) and m> 0 give


m = �
JX

k=1

HmkT0
�1Tk
m�k

= �
JX

k=1

HmkT0
�1Tk b
m�k

@m�k

@�m�k

= �
JX

k=1

HmkT0
�1 bTk @k

@�k
b
m�k

@m�k

@�m�k

= �
JX

k=1

HmkT0
�1 bTk b
m�k

@m

@�m

= �[
JX

k=1

Hmk
bT�10

bTk b
m�k]
@m

@�m

= b
m

@m

@�m
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when using (E.3) for all j � m � 1, (E.1), (E.4) for all j � m � 1, T0�1 = bT�10 , and (E.5) for m > 0,
respectively. Equation (E.3) is also proven by induction if the b
j component operators are given by (E.5).


